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Integrating autonomous disciplines into a problem amenable to solution presents a major
challenge in realistic multidisciplinary design optimization (MDO). We propose a linguistic
approach to MDO problem description, formulation, and solution we call reconfigurable
multidisciplinary synthesis (REMS). With assistance from computer science techniques,
REMS comprises an abstract language and a collection of processes that provide a means
for dynamic reasoning about MDO problems in a range of contexts. The approach may be
summarized as follows. Description of disciplinary data according to the rules of a gram-
mar, followed by lexical analysis and compilation, yields basic computational components
that can be assembled into various MDO problem formulations and solution algorithms,
including hybrid strategies, with relative ease. The ability to re-use the computational
components is due to the special structure of the MDO problem. The range of contexts
for reasoning about MDO spans tasks from error checking and derivative computation to
formulation and reformulation of optimization problem statements. In highly structured
contexts, reconfigurability can mean a straightforward transformation among problem for-
mulations with a single operation. We hope that REMS will enable experimentation with
a variety of problem formulations in research environments, assist in the assembly of MDO
test problems, and serve as a pre-processor in computational frameworks in production
environments. Part 1 of two companion papers, discusses the fundamentals of REMS. This
paper, Part 2 illustrates the methodology in more detail.

I. Introduction

This paper provides further details of reconfigurable multidisciplinary synthesis (REMS), the approach
to multidisciplinary design optimization problem formulation introduced in the companion paper, Recon-
figurability in MDO Problem Synthesis, Part 1. As in that paper, our focus is on that part of the design
process that can be formulated as an optimization problem.

In our view, there is a clear need for such a logical framework that will enable researchers and practitioners
of MDO to reason about various problem formulations in view of the problem structure and the optimization
algorithms available. The ideas reported here grew out of our own desire for such a tool in our research, and
our experience trying to reconfigure test problems that have appeared in the literature.

The possibility of conceptually reconfiguring computational components in an automatic fashion to arrive
at different problem formulations and algorithms for their solution flows naturally from the fact that most
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MDO formulations share the basic computational components, comprising output/input couplings and the
attendant sensitivity information. Moreover, MDO problem formulations may be viewed as being related (or
distinguished) by the specific closure of constraints and the elimination of independent variables in a suitably
general abstraction of the MDO integration problem. Although the task of integrating disciplinary analyses
is inherently difficult, MDO problem synthesis and solution can be significantly eased with an appropriate
implementation of the basic computational components and a general abstract framework in which to reason
about the problem.

In this paper we examine such an abstract framework and discuss its relation to MDO problem formula-
tions. These formulations may be viewed as deriving from the way that independent variables are eliminated
from the problem. The elimination of independent variables makes some of the variables in the problem to be
treated as functions of the remaining independent variables. Variable elimination is achieved either through
the use of implicit relations defined by equality constraints or through disciplinary optimization problems.

It is possible to develop a formal grammar that describes the underlying structure of the MDO problem,
beginning at the level of the constituent subsystems, though we do not discuss this point in detail here. From
these individual pieces we can then generate various intermediate representations (IR) of the pieces of the
MDO problem and derive an understanding of what changes in the problem as a consequence of choosing
different MDO formulations. This understanding is to be achieved in a systematic and automatic way by
applying transformations to the underlying IR.

The key, in our view, is to develop a specification of MDO problems that begins at the lowest disciplinary
or subsystem level and proceed to the MDO problem level via the incremental introduction of additional
information. This allows one to begin with appropriate descriptions of the subsystems, described in isolation,
and reason upward in a systematic way to various MDO problem formulations.

The basic ideas and technology are like those used in computer language compilers and also in automatic
differentiation (which is itself based on compiler technology), and we make no claims of novelty for the basic
mathematical tools we apply. Moreover, there are similarities between elements of the proposed approach
and work that has appeared previously (see the companion paper1 for a brief review); however, our goals
differ.

Our experience attempting to modify extant test problems for our own purposes is that the low-level
structure we need to know in order to reformulate the problem typically has been obscured in the test
problem we inherit. The multidisciplinary problem structure has been completely integrated into a particular
MDO problem formulation, and this makes it difficult to “dis-integrate” the problem for the purposes of
reformulation.

II. The data flow graph

We model the flow of data among the constituent disciplines and the optimization objectives and con-
straints as a directed graph, or digraph, a widely used abstraction in applied mathematics.2,3 A directed
graph consists of a set of nodes, a set of edges between nodes, and a two relations of incidence. For each
edge, the incidence relations give the directedness of the edge: given an edge between two nodes, one node
is distinguished as the head of the edge and one as the tail.

We denote graphs generically by G. Given a node n ∈ G, we speak of the predecessors and successors of
n. The predecessors of n, which we denote by P (n), are the nodes m for which there is an arc from m to n.
The successors of n, which we denote by S(n), are the nodes m for which there is an arc from n to m.

The fundamental types of nodes in the data flow graph are the data nodes, which we denote generically
by d, and the function nodes, denoted generically by f . The data nodes represent the inputs and outputs
of functions, e.g., the inputs and outputs of a disciplinary analysis. The function nodes represent the
optimization objectives and constraints, and, most significantly, the various subsystem operations. A function
node may represent an operation as large as an entire disciplinary analysis, but might also be a very simple,
low-level operation. A hierarchical level of detail is possible, with a given function node representing a
collection of functions and data nodes, with the desired level of detail made visible.
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Data are represented by nodes rather than by arcs since a given datum may be the input to more than
one function. Each data node has a single predecessor or successor, either a function or a data node. As
we shall see, an edge between two data nodes is an opportunity for decoupling. The predecessors of each
function node are always data nodes.

A node with no predecessors is called a root or a source, while a node with no successors is called a
leaf or a sink. Local and system design variables will typically be sources, while terminal outputs, such as
optimization objectives and constraints, will be sinks.

Associated with a digraph is its incidence matrix. The incidence matrix A of a digraph G is constructed
as follows. Index the nodes of G by 1, . . . , N . Then A is an N ×N matrix whose (m,n) entry is 1 if there
is an arc from m to n, and 0 otherwise. We use both the digraph and the incidence matrix as intermediate
representations of coupled MDO systems.

A directed path in a digraph is a sequence of nodes n1, . . . , np such that ni+1 is a successor of ni for each
i = 1, . . . , p − 1. A directed path may also be viewed as containing the directed edges between the nodes
that define the path. A cycle is a directed path whose first and last nodes are the same. We use the notation
m ≺ n if there is a directed path from node m to node n. This means there is a dependence of m on n.

It is possible that m ≺ m, which means that m lies on a cycle. If m is a data node, then m ≺ m
indicates that m is defined by an implicit relation involving m. That is, m ≺ m indicates that an iterative
process must be performed to compute the quantity m. Depending on the ultimate problem formulation,
this may mean that there is a sequentiality in the computations represented by the data flow graph. There
exist algorithms for detecting all the cycles in a digraph,4 so cycle and feedback analysis can be performed
automatically using the data flow digraph. In this paper we consider only the static data flow graph and
do not discuss the issue of cycle and feedback analysis. We note, however, that the DeMAID system,5 for
instance, performs a similar analysis and will provide a basis for our future investigation of feedback analysis.

When considering the dependences of data on other data, it is useful to think of the data nodes by
themselves. For this purpose, we define a related graph Gdata, derived from G by deleting the function
nodes and connecting the predecessors of each function node to the successors. That is, let f ∈ G be a
function node; then, for each d ∈ S(f), we set P (d) = P (f) in Gdata.

III. Model problem

Figure 1 depicts an artificial MDO problem. We use this problem to illustrate the assembly of the data
flow graph and its manipulation at the level of the IR of the problem. This level of abstraction enables us
to hide most of the implementation and its complexity from those specifying the problem.

In Figure 1 there are four disciplines, the boxes labeled A,B,C,D. Each discipline has a set of inputs and
outputs, denoted by the round data nodes. The input–output relations for each discipline are given for each
discipline in isolation. Specification of the input–output relations at this level, without reference to any other
discipline, gives the maximum flexibility in later analyzing the couplings and opportunities for reformulating
the MDO problem. The labeling used in Figure 1 is purely a place-holder; in practice the functions and data
are labeled by descriptive character strings.

Note that in the model of a discipline illustrated in Figure 1, the outputs of the discipline are specified
without regard to where they may go in the multidisciplinary setting. The approach we propose is based
on using the specification of disciplines in isolation as much as possible to determine the multidisciplinary
structure.

Divorcing the disciplinary specification from the multidisciplinary context also simplifies the notation
and mathematics. If we were to use, say, notation such as “uAB” and “uAC” to represent the outputs
from discipline A that are passed to B and C, respectively, then there is the complication that some of the
quantities in uAB and uAC may be the same. Sticking to the lowest-level, autonomous specification of a
discipline avoids this complication.

In Figure 2, the data flow for the completely coupled system is shown as it exists for a multidisciplinary
analysis. The inputs of each discipline have been associated with the corresponding output. Each colored
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area contains a discipline and its outputs. The interdisciplinary output-input relations are represented by
the red arcs that leave a colored area and enter an area of a different color.

In Figure 3, we have added optimization components to the data flow graph. The optimization compo-
nents are the objective F and the constraints C, c{A,B,C,D}. The optimization formulation given in Figure 3
is one in which the optimization is superimposed in a conventional way on a multidisciplinary analysis. The
nodes (F , C, c{A,B,C,D}) are function nodes that represent optimization objectives and constraints. From
Figure 3 we see that optimization components are sinks. To simplify the diagram, we have chosen to specify
the optimization function nodes as having no data output, though in reality they actually would. Sources,
on the other hand, represent design variables that are manipulated by the optimization algorithm being used
or possibly static parameters. We can perform error checking at this point to make sure all data nodes that
appear as sources or sinks are intended as such, or whether an output/input pairing has been misspecified.

Figures 4–8 describe a test problem taken from Sobieski, Agte, and Sandusky.6 The disciplines are
range, power, drag polar, and weight. Figure 4 describes the totality of input/output relations for the
coupled system. Taken individually, the input/output relations in Figures 5–8 are much simpler.

As our examples illustrate, the subsystem input/output relations can be described in a straightforward
way. The key is not to insist on knowing at this stage the interdisciplinary origins of the inputs or the
interdisciplinary destinations of the outputs. This means that the input/output relations can be described
autonomously at the subsystem level, an important feature in the MDO setting.

These low-level input/output relations can then be assembled in a systematic (automatic) way to arrive
at the interdisciplinary couplings. At this assembly level we can perform some error checking; for instance,
we can check to make sure that if an input is expected, then there is a matching output for it.

The model here is that disciplines pull information in, rather than push information out. In the discipline-
push model, we must know a priori which outputs are sent where. However, this information is not needed to
describe a discipline in isolation. In the discipline-pull model, the pairing of outputs with inputs automatically
captures the coupling.

The process we propose for assembling the IR of the MDO coupling is very much like the compila-
tion/linking steps of a computer language. The first step (compilation) is applied independently to each
member of a collection of disciplinary input/output descriptions (source files) to produce an IR of each
discipline (object files). The second step (linking) takes the IR of each discipline and combines them into an
IR of the coupled system. We can then perform various transformations of the problem using the IR and
study different MDO problem formulations.

IV. Interdisciplinary coupling and variable elimination

The interdisciplinary output-input data pairings are the points of flexibility in MDO problem formulation.
While the multidisciplinary coupling depicted in Figure 2 or Figure 3 may seem the natural one, the real
picture is that depicted in Figure 9. In Figure 9 we have not identified each input with the corresponding
output and eliminated one of the nodes from the graph. Each of the output/input pairings is an opportunity
for modifying the problem formulation, so we do not automatically eliminate one of the paired output/input
nodes. The output labels in the output/input pairings are distinguished by bars.

Data nodes are typically viewed as being replicated in the MDO problem to allow autonomy in the
disciplinary calculations. We would say that the replicated nodes are inherent in the disciplinary descriptions
(Figure 1), and we keep this replication explicit in the data flow digraph representation. This reflects the
fact that the problem we are considering is one of problem integration, rather than problem decomposition.

At this point, we can begin to apply abstract problem transformations. In the following discussion, for
any letter v, we use v to denote the vector of outputs vi. For instance, a = (a1, a2, a3, a4).

For each output/input data pairing there is an implicit equality consistency constraint, simply

output = input.

If we make all of these consistency constraints explicit in the system level optimization problem we arrive at
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the following formulation:

minimize
s,α,β,γ,δ,a,b,c

F (a4, b1, d1)

subject to C(s, a4) ≥ 0
cA(ã1, ã4) ≥ 0 a = ã(b1, c2)
cB(b̃1, b̃3) ≥ 0 b = b̃(a3, c2, d1)
cC(c̃1, c̃3) ≥ 0 c = c̃(a1, a2, b2)
cD(d̃1) ≥ 0 d = d̃(b3, c1, c2).

(1)

If we close all of the consistency constraints, i.e., all the output-input data nodes are combined, we arrive at
the following fully integrated problem, corresponding to Figure 3:

minimize
s,α,β,γ,δ

F (a4(s, α, β, γ, δ), b1(s, α, β, γ, δ), d1(s, α, β, γ, δ))

subject to C(s, a4(s, α, β, γ, δ)) ≥ 0
cA(a1(s, α, β, γ, δ), a4(s, α, β, γ, δ)) ≥ 0
cB(b1(s, α, β, γ, δ), b3(s, α, β, γ, δ)) ≥ 0
cC(c1(s, α, β, γ, δ), c3(s, α, β, γ, δ)) ≥ 0
cD(d1(s, α, β, γ, δ)) ≥ 0,

(2)

where there is an underlying multidisciplinary analysis that can be described as the process of solving the
system

a = A(b1, c2)
b = B(a3, c2, d1)
c = C(a1, a2, b2)
d = D(b3, c1, c2).

Note that the data flow graph in Figure 3 is a transformation, in a systematic way, of the graph in
Figure 9. The transformation involves coalescing data nodes with an edge between them. Moreover, for each
such operation, the chain rule and implicit differentiation enable us to keep track of the effect of these output–
input identifications on the sensitivities of the quantities in the data flow graph. Finally, the formalism of
the data flow graph allows us to perform these transformations and analysis automatically, working on the
graph representation.

The effect of closing constraints on sensitivities is straightforward to compute. Suppose φ(x, u) is a vector
or scalar valued function, and let

Φ(x) = φ(x, u(x)).

We assume that given x, u(x) is the solution of some system

S(x, u(x)) = 0. (3)

Then Φ(x) reflects what happens when u is eliminated as an independent variable via (3). It is a standard
result that follows from implicit differentiation7,8 that the derivatives of φ and Φ are related as follows. Let
W be the injection operator

W = W (x, v) =

(
I

−S−1
u (x, v)Sx(x, v)

)
,

where a variable appearing as a subscript denotes the partial derivative with respect to that variable. The
reduction operator is the transpose WT .
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Let λ = λ(x, u) be given by
λ = − (Su(x, u))−T ∇uφ(x, u).

The Lagrangian L(x, u;λ) is
L(x, u, λ) = φ(x, u) + λT S(x, u).

Then
∇xΦ(x) = WT (x, u(x))∇(x,u)φ(x, u(x)). (4)

The quantity on the right-hand side of (4) is known as the reduced gradient.7 We also have

∇2
xxΦ(x) = WT

(
∇2

(x,u)φ +∇2
(x,u)S · λ

)
W. (5)

The quantity on the right-hand side of the preceding equation is the reduced Hessian7 of the Lagrangian.
The relationships (4) and (5) show what happens to sensitivities when independent variables are elimi-

nated via relations of the form (3). In our example, the relations

a−A(b1, c2) = 0
b−B(a3, c2, d1) = 0
c− C(a1, a2, b2) = 0
d−D(b3, c1, c2) = 0

are each relations of the form (3). Moreover, the reduction operator for any relation or set of relations of
this form can be readily computed and applied in an symbolic manner. For instance, using S(a, b1, c2) =
a−A(b1, c2) = 0 to define a as an implicit function of the other variables, we have

WT =

 I

∂A

∂(b1, c2)
.

 ,

where
∂A

∂(b1, c2)
should be taken to mean the Jacobian of A with respect to all the remaining variables, but

since A only depends on b1 and c2, only these entries are nonzero. Note that the reduction operations we
describe here contain essentially the same information as the generalized sensitivity equations.9

Symbolic manipulation using variable reduction allows us to see how to take the disciplinary input/output
sensitivities and calculate system sensitivities for the coupled system. This provides guidance in implementing
sensitivity calculations from the subsystem computational components. Again, implicit differentiation tells us
that the superset sensitivities required can be derived from the input/output specifications for the individual
disciplines, describing only the local dependences of each datum on the others. The global sensitivities
can then be constructed automatically, essentially via the chain rule. In this regard, the manipulations we
describe here resemble the techniques of the forward mode of automatic differentiation.10

Alternatively, nodes can be combined and treated as a single supernode if the nodes are viewed as being
aggregated as a single computational unit. Sensitivities for the aggregated nodes can then be computed.
This is useful if the bandwidth of the data being passed among function nodes varies considerably. By
adding attributes that described the size of the outputs and inputs it is possible to look for function and
data groupings that reduce the cost of sensitivity calculations.

For instance, consider the disciplines A and C in Figure 9. If the outputs ã1, ã2 and c̃1 that couple A and
C involve a large number of variables, while the outputs ã3 and c̃2, c̃3 coupling A and C to B and D involve
a small number of variables, it may make sense to close the consistency constraints for the variables coupling
A and C, removing these coupling variables and the cost of the attendant sensitivity calculations from the
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problem. Analysis of the digraph and incidence matrix can shed light on ways to aggregate functions to
reduce sensitivity costs.

Formally, the aggregation of a set of nodes requires that we first identify all the function nodes in the
set, and consider the subgraph defined by the function nodes and all their successors (these will be data
nodes). All data nodes in the resulting subgraph that are sinks can then be treated as implicit functions
of the remaining data nodes in the complement of the subgraph. The subgraph function nodes and any
non-sink data nodes in the subgraph which never leave the set of operations being aggregated can then be
treated as a single supernode, inheriting the edges into and out of the set of subgraph function nodes.

V. System and subsystem optimization problems

In the formalism we have described, optimization constraints and objectives can be added explicitly, as
function nodes. We need not make any a priori distinction between disciplinary objectives and constraints
since this information can be detected via analysis of the data flow digraph. Equally important, constraints
and objectives can be added incrementally, and their description is independent of the discipline specifica-
tions. Again, definition of the constraint and objective inputs pulls in data from the the appropriate nodes.
The data flow digraph also enables us to examine the sensitivity calculations involved in the optimization
problem.

A more interesting and difficult question is the automatic introduction of disciplinary optimization prob-
lems as a technique for eliminating variables. In the preceding section we discussed variable elimination
using the equality constraints implicit in the output/input relations between the disciplines. Eliminating
variables through disciplinary optimization problems, on the other hand, seems inescapably to require the
introduction of elements not implicit in the problem description, and to do so in a way that allows for a
generic, template-like definition of the disciplinary optimization problems.

We illustrate this question using Collaborative Optimization (CO).11 We apply a version of CO to the
discipline D in Figure 9 as follows. From the system-level problem, Discipline D receives values of its inputs
c2, c3, and b3, a value for the system-level design variables sD = s, and a target value d1 for its output d̃1.
For discipline D we then solve the disciplinary problem

minimize
δ

1
2

∥∥∥ d̃1(δ; s, b3, c2, c3)− d1

∥∥∥2

subject to cD(d̃1(δ; s, b3, c2, c3) ≥ 0.
(6)

This is an optimization problem in the local design variables δ alone. (By a local design variable we mean
an input to discipline that is an input to no other discipline.)

The optimal value of the objective in (6) is then returned to the system-level problem as an equality
constraint. The system-level problem must drive the value of this constraint to zero. The output from solving
(6) is a function only of the targets s, b3, c2, c3, d1 passed to D; the local design variables δ are eliminated
from the system-level problem.

Incorporating approaches, such as CO, that introduce disciplinary optimization problems as a mechanism
for eliminating variables makes for a bit of a dilemma in any abstraction of the structure of an MDO problem.
One solution would be to describe the disciplinary optimization problem and its solution as a function node,
explicitly state the specific inputs and outputs to this function node, and aggregate the eliminated local
design variables inside this node.

It would be more attractive, however, if a disciplinary optimization problem could be described as a
generic template and introduced automatically, without the need for explicit specification of the inputs and
outputs for each discipline. The digraph structural abstraction we have described currently admits a partial
solution in this direction.

The key is to observe that the variables that can be eliminated by a disciplinary optimization problem are
local design variables. Local design variables can be determined automatically by examining the data flow
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digraph; they are source data nodes with a single arc out of them. (System-level design variables correspond
to source data nodes with more than one out-going arc.) Abstractly, the introduction of a disciplinary
optimization problem can be viewed as replacing a disciplinary analysis, i.e., function node, and the local
design variables with a new function node that represents the disciplinary optimization problem.

The inputs and outputs of this new function correspond, at least in their data flow, to the non-local
inputs and outputs of the original function node. In addition, the disciplinary optimization problem will
typically have as an output node a sink corresponding to a system-level consistency constraint. In this way
it is possible to give a generic specification of a disciplinary optimization problem as a means for eliminating
local design variables that admits automatic application, in the same manner that we eliminated coupling
variables via equality constraints previously.

VI. Concluding remarks

The idea of the approach to specifying and reasoning about MDO problem integration we have discussed
is to draw the widest set of useful information from the least effort—descriptions of the input/output relations
of the individual subsystems, in isolation. Moreover, the structure of MDO problems and the techniques
used in their formulation allow, in the large, for specification in a formal grammar whose interpretation and
manipulation can be automated. At this stage, we have outlined the formal specification of the grammar in a
form appropriate for compiler construction.12 The development of the language and techniques for analysis
and manipulation is a focus of our current research.
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